NUMBER SYSTEM

INTRODUGTION

NUMBER SYSTEM CHART

System	Base	Symbols
Decimal	10	$0,1, \ldots 9$
Binary	2	0,1
Octal	8	$0,1, \ldots 7$
Hexa- decimal	16	$0,1, \ldots 9$, $\mathrm{A}, \mathrm{B}, \ldots \mathrm{F}$

BASIC CONVERSION

DECIMAL

BINARY

BINARY TO DECIMAL

Technique

Multiply each bit by 2^{n}, where n is the "weight" of the bit
The weight is the position of the bit, starting from 0 on the right
Add the results EX:-

$1 O 1 O 11_{2}=>$	$1 \times 2^{0}=$	1
$1 \times 2^{1}=$	2	
$0 \times 2^{2}=$	0	
$1 \times 2^{3}=$	8	
$0 \times 2^{4}=$	0	
$1 \times 2^{5}=$	32	

DECIMAL TO BINARY

Technique

- Divide by two, keep track of the remainder
- First remainder is bit 0 (LSB, least-significant bit)
- Second remainder is b

Example:-
$(1000001110111)_{2}$
$(4215)_{10}$

OGTAL TO HEXADECIMAL

- When converting from octal to hexadecimal, it is often easier to first convert the octal number into binary and then from binary into hexadecimal.
Example:- convert 345 octal into hexadecimal

Octal $=$	3	4	5	
Binary $=$	011	100	101	
		Now from binary to Hexadecimal		
Binary $=$	1110	5	$=$ E5 hex	

INTRODUCTION : ELECTRONICS

$>$ Device that performs a basic operation on electrical signals
$>$ Methods for describing the behavior of gates and circuits

- Boolean expressions
- logic diagrams
- truth tables

BOOLEAN EXPRESSION

$>$ Demonstrates the activity of electrical circuits in terms of algebraic notation
$>$ Example is :

- Product Terms - Terms that are ANDed together and called MAX Terms
- XYZ
- $(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})(\mathrm{A}+\mathrm{D})$
- Sum Terms - Terms that are ORed together and called MIN Terms
- $X+Y+Z$
- $X Y Z+V X$

LOGIC DIAGRAM

> Defines the function of a gate by listing all possible input combinations and the corresponding output

Truth Table

$>$ Defines the function of a gate by listing all possible input combinations and the corresponding output

\mathbf{A}	\mathbf{B}	\mathbf{S}	\mathbf{C}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

TYPES OF GATES

$>$ Can be classified as
-Basic gates

- (OR, AND, NOT)
-Universal gates
- (NAND, NOR)
-Exclusive gates
- (X-OR, X-NOR)

LOGICAL GATES

Basic Logic Gates

$$
\begin{array}{l|l}
\mathrm{A} & \mathrm{Y} \\
\hline 0 & 1 \\
1 & 0
\end{array}
$$

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

