NUMBER SYSTEM

INTRODUCTION

NUMBER SYSTEM CHART

System	Base	Symbols
Decimal	10	0, 1, 9
Binary	2	0, 1
Octal	8	0, 1, 7
Hexa-	16	0, 1, 9,
decimal		A, B, F

BASIC CONVERSION

BINARY TO DECIMAL

Technique

Multiply each bit by 2^n , where *n* is the "weight" of the bit The weight is the position of the bit, starting from 0 on the right

Add the results EX:-

101011 ₂ =>	1	Х	20	=	1
	1	Х	21	=	2
	Ο	Х	2 ²	—	Ο
	1	Х	2 ³	—	8
	Ο	Х	24	—	Ο
	1	Х	2 ⁵	—	32
					43 ₁₀

DECIMAL TO BINARY

Technique

- Divide by two, keep track of the remainder
- First remainder is bit 0 (LSB, least-significant bit)
- Second remainder is b

Example:-

OCTAL TO HEXADECIMAL

• When converting from octal to hexadecimal, it is often easier to first convert the octal number into binary and then from binary into hexadecimal.

Example:- convert 345 octal into hexadecimal

INTRODUCTION : ELECTRONICS

- Device that performs a basic operation on electrical signals
- Methods for describing the behavior of gates and circuits
 - Boolean expressions
 - logic diagrams
 - truth tables

BOOLEAN EXPRESSION

Demonstrates the activity of electrical circuits in terms of algebraic notation

Example is :

- Product Terms Terms that are ANDed together and called MAX Terms
 - XYZ
 - (A+B)(C+D)(A+D)
- Sum Terms Terms that are ORed together and called MIN Terms
 - X+Y+Z
 - XYZ + VX

LOGIC DIAGRAM

Defines the function of a gate by listing all possible input combinations and the corresponding output

Truth Table

Defines the function of a gate by listing all possible input combinations and the corresponding output

Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

в

Sum

TYPES OF GATES

Can be classified as

- -Basic gates
 - (OR, AND, NOT)
- -Universal gates
- (NAND, NOR)
- -Exclusive gates
- (X-OR, X-NOR)

LOGICAL GATES

