
Programming Languages

BASIC TERMS

A computer language is a set of symbols

and rules used in constructing programs

called syntax.

Algorithm :- Step by step description that

the program must perform arithmetical

and logical expression to arrive at the

solution.

Flowchart:- A popular logic tool used for

showing an algorithm in graphics form.

Low Level

Language

High Level

Language

1st Generation

(Machine Language)

2nd Generation

(Assembly Language)

3rd Generation

4th Generation

5th Generation

Computer Language

CLASSIFICATION

LOW LEVEL LANGUAGES

Machine dependant.

Close to the hardware

Should have hardware knowledge to write

a program

Examples :

 Machine Language

 Assembly Language

HIGH LEVEL LANGUAGES

Machine independent.

Easy to write and modify.

Does not need knowledge of hardware.

Productivity is high.

Consume less time to write programs

5GL allow user-friendly facilities

PROGRAMMING LANGUAGE

PARADIGMS

Procedural:
procedures, sequential execution of code are basic
building blocks of program

FORTRAN (FORmula TRANslating; John Backus, IBM, 1950s)

ALGOL (ALGOrithmic Language, 1958)

COBOL (COmmon Business Oriented Language, 1960)

BASIC (Beginner's All-purpose Symbolic Instruction Code,

John Kemeny and Thomas Kurtz, Dartmouth, 1964)

Pascal (Niklaus Wirth, 1970)

C (Dennis Ritchie, Bell Labs, 1972)

PROGRAMMING LANGUAGE

PARADIGMS

Object-Oriented:

Program is designed around the objects required to
solve the problem

Smalltalk (Alan Kay, Xerox PARC, 1971)

Ada (US Dept of Defense, 1975)

C++ (Bjarne Stroustrup, Bell Labs, 1983)

Java (James Gosling, Sun Microsystems, 1995)

C# (Microsoft, 2000)

PROGRAMMING LANGUAGE

PARADIGMS

Non-procedural languages

HTML

Hyper Text Markup Language

JSP

Java Server Page

ASP

Active Server Page

SQL

Structured Query Language

TRANSLATORS

Translator is used to convert source code

into object code.

These are of three types

Assembler

Interpreter

Compiler

Source Code Object Code
Translator

TYPES OF DESIGN

Top-Down-Design

In top-down model, an overview of the system is
formulated, without going into detail for any part
of it.

TYPES OF DESIGN

Bottom-up Design

In bottom-up design individual parts of the
system are specified in details.

STRUCTURE OF PROGRAM

Comment section

library section

Declaration section

Main()

{

Variable declaration;

Executable code;

}

EXAMPLE OF A PROGRAM

Comments

– Text surrounded by /* and */ is ignored by

computer

• #include <stdio.h>

– Preprocessor directive

1 /* Fig. 2.1: fig02_01.c

2 A first program in C */

3 #include <stdio.h>

4

5 int main()

6 {

7 printf("Welcome to C!\n");

8

9 return 0;

10 }

Example continue

• int main()

– C++ programs contain one or more functions,
exactly one of which must be main

– Parenthesis used to indicate a function

– int means that main "returns" an integer value

– Braces ({ and }) indicate a block

• The bodies of all functions must be contained
in braces

COMMENT

In computer programming a comment is a
programmer-readable annotation in the source code
of a computer program. They are added with the
purpose of making the source code easier to
understand, and are generally ignored by compilers
and interpreters.

TYPES OF COMMENTS

 SINGLE-LINE COMMENTS

MULTI-LINE COMMENTS

LIBRARY SECTION

A library is a collection of implementation of methods,
written in terms of a language, that has a well-defined
interface by which the method is invoked.

Method to include library functions in a program,

#include <*.h>

Imports *.class

DECLARATION SECTION

There are two types of declaration :-

Local Variables

These variables only exist inside the specific

function that creates them. They are unknown to

other functions and to the main program.

Global Variables

These variables can be accessed (i.e. known) by

any function comprising the program. They are

implemented by associating memory locations with

variable names.

DECLARATION OF VARIABLES

int i=4; /* Global definition */

main()

{

i++; /* global variable */

func

}

func()

{

int i=10; /* Internal declaration */

i++; /* Internal variable */

}

SCOPE AND LIFETIME OF

VARIABLE

Scope Variable Lifetime Variables

The scope of a

declaration is the part of

the program for which

the declaration is in

effect.

The lifetime of a

variable or object is the

time period in which the

variable/object has valid

memory

LIFETIME VARIABLE EXAMPLE

A static variable is stored in the data segment of

the "object file" of a program. Its lifetime is the

entire duration of the program's execution.

Example
• #include <stdio.h>

• Void func (){

• Static int x=0;

• X++;

• Printf(“%d\n”,x);}

• int main ()

• func();

• func();

• Return 0;}

OTHER EXAMPLE

•Automatic: An automatic variable has a lifetime

that begins when program execution enters the

function or statement block or compound and ends

when execution leaves the block. Automatic

variables are stored in a "function call stack".

Dynamic: The lifetime of a dynamic object begins

when memory is allocated for the object
•(e.g., by a call to malloc()) and ends when memory
is deallocated (e.g., by a call to free()). Dynamic objects
are stored in "the heap".

DATATYPES

INTRODUCTION

The data type of a value (or variable in some

contexts) is an attribute that tells what kind

of data that value can hold.

A data type is a classification identifying one

of various types of data.

TYPES OF DATATYPES

Almost all programming languages explicitly
include the notion of data type, though
different languages may use different
terminology. Common data types include

Integers

Booleans

Characters

Floating-point Numbers

Alphanumeric Strings

ARRAY

Arrays, a kind of data structure that can
store a fixed-size sequential collection of
elements of the same type.

All arrays consist of contiguous memory
locations. The lowest address corresponds
to the first element and the highest address
to the last element.

DATATYPES IN JAVA

OBJECT ORIENTED

PROGRAMMING SYSTEM

OOPS

Object-oriented programming (OOP) refers to a
type of computer programming concept in which
programmers define not only the data type of a
data structure, but also the types of operations
(functions) that can be applied to the data
structure.

In this way, the data structure becomes an
object that includes both data and functions. In
addition, programmers can create relationships
between one object and another.

CONCEPT OF OOPS

CONCEPTS

Encapsulation – Encapsulation is capturing

data and keeping it safely and securely from

outside interfaces.

 Inheritance- This is the process by which a

class can be derived from a base class with

all features of base class and some of its

own. This increases code reusability.

Abstraction- The ability to represent data at a

very conceptual level without any details.

OBJECT

Objects take up space in the memory and

acts as instances of classes. When a

program is executed , the objects interact by

sending messages to one another. Each

object contain data and code to manipulate

the data. Objects can interact without having

know details of each others data or code.

CLASS

Class is a collection of objects of similar

type. Objects are variables of the type class.

Once a class has been defined, we can

create any number of objects belonging to

that class. Eg: grapes and orange are the

member of class fruit.

BINDING AND BINDING TIMES

A binding in a program is an association of an

attribute with a program component such as an

identifier or a symbol.

Early Binding

method being called is looked up by name at

COMPILE TIME.

Late Binding

method being called is looked up by name at

RUNTIME.

POLYMORPHISM

The ability to use an operator or function in

different ways in other words giving different

meaning or functions to the operators or

functions is called polymorphism.

POLYMORPHISM

COMPILETIME RUNTIME

(OVERLOADING) (OVERRIDING)

OVERLOADING

Overloading is ability of one function to

perform different tasks i.e. it allows creating

several methods with the same name which

differ from each other in the type of the input

and the output of the function.

Overloading can be used with functions and

members.

OVERRIDING

Overriding is an object-oriented

programming feature that enables a child

class to provide different implementation for

a method that is already defined or

implemented in its parent class or one of its

parent classes.

DATA STRUCTURE

INTRODUCTION

Data Structures provide a way to manage

large amounts of data efficiently.

A data structure is a concept of organizing

data in a computer so that it can be used

efficiently and effectively.

LINKED LIST

Linked List is a linear data structure and it is very
common data structure which consists of group of
nodes in a sequence which is divided in two parts.

Data

Address.

Linked Lists are used to create trees and graphs.

TYPES OF LINK LIST

DOUBLE LINK LIST

CIRCULAR LINK LIST

QUEUE

Queue is also an abstract data type or a linear data

structure.

element is inserted from one end called REAR

Deletion takes place from the FRONT.

This makes queue as FIFO data structure

STACK

Stack is an abstract data type with a

bounded(predefined) capacity.

It operates on data by two operations

PUSH

POP

Stack uses LIFO order

SORTING

Sorting is a technique of arranging data in a given

manner. For example numbers can be arranged in

ascending or descending manner.

Worst Case Average Case Best Case

Bubble Sort O(n2) O(n2) O(n)

Insertion Sort O(n2) O(n2) O(n)

Merge Sort O(n log n) O(n log n) O(n log n)

Heap Sort O(n log n) O(n log n) O(n log n)

Quick Sort O(n2) O(n log n) O(n log n)

